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ABSTRACT

Goda‘'s (1975) model, describing wave transformation from
deep water to across the surf zone, is compared with a large
amount of wave data obtained from experiments conducted at
Torrey Pines Beach, San Diego, California. Goda's model
simulates wave breaking by truncating the Rayleigh distribu-
tion in order to estimate the wave height distributions across
the surf zone; wave heights are shoaled by applying nonlinear
theory. Comparisons between the empirical distributions and
theoretical distributions, and between measured and theoreti-
cal rms wave heights, are made. It is found that Goda's
model over-predicts the tails and under-predicts the peaks
of the empirical distributions, and that the calculated rms
wave heights are too large compared with measured values.

The range of breaking, and the coefficients used in the
breaking criteria by Goda, are modified in order to obtain
a model which better fits the distribution of observed
heights, and which matches the model and observed rms wave
heights. The results are quite good, with error envelope
for predicted rms wave heights less than 20%. Linear shoal-

ing theory is applied to the model and found to be as good

as applying nonlinear theory. 3
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I. INTRODUCTION

The evaluation of an irregular group of shoaling waves
as they approach and pass through the breaker zone is a com-
plex process which requires special measurements and analy-
sis considerations. The usual approach to shallow water
wave transformations is to predict, from a single "represen-

tative" set of deep water parameters, the wave height, the

wavelength and the frequency at specific shallow water depths,
using linear shoaling theory. The primary objection to this
approach is that a single set of deep water wave parameters
does not realistically represent the distributional charac-
teristics of naturally occurring sea surface waves. A
secondary objection arises from the use of linear transfor-
mations which become inadequate when applied through the

surf zone (Wood, 1974).

Wave heights in deep water, having Gaussian surface ele-
vations, are described by the Rayleigh distribution (Longuet-
Higgins, 1952). Waves propagating toward shore can increase
in height due to shoaling effects, refraction and wave inter-
actions, and eventually reach a depth where they start break-
ing. The energy dissipation due to breaking has been simu-
lated (Goda, 1975) by truncating the tail of the Rayleigh

distribution.

Experiments were conducted at Torrey Pines Beach, San
Diego, California, during November 1978. Sea surface eleva-

tions, pressures and velocities were measured at closely

12




spaced locations in a line extending from 10m depth to
inside the surf zone. This thesis applies Goda's model to
the measurements in order to examine the shoaling and trans-
formation of wave heights and their probability density func-
tions (pdf's) from deep water to breaking and across the

surf zone to the shoreline.
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II. THEORETICAL BACKXGROUND

A. RAYLEIGH DISTRIBUTION

The Rayleigh distribution was shown theoretically by
Longuet-Higgins (1952) to apply to cdeep water wave heights
on the assumption that the sea waves are a narrow-banded
Gaussian process. Barber (1950) had earlier preserted empiri-
cal evidence that the Rayleigh distribution agreed with the
measured distribution of waves. On the assumption that the
wave height is twice the wave amplitude, the wave height

probability density is then represented by
_ =2 _ul 2
p(H) = 2H/Hrms exp (-H /H pg) (1)

where Hrms is the rms wave height.

Using pressure records in the Gulf of Mexico, Longuet-
Higgins (1975) observed that the Rayleigh distribution fits
the observed distribution reasonably well in "fairly deep

water". He found that there is a slight excess of waves

with heights near the middle of the range and a deficit at
the two extremes. Since much of the high-frequency portions
of the wave records were filtered out by the pressure trans-
ducer, Longuet-Higgins (1975) suggested that the narrow band
approximation may not be as applicable for the unfiltered
records. 1In shallow water with much steeper waves, the
Rayleigh distribution can again be expected to be less

applicable due to the non-linearities.

14




Since the Rayleigh distribution theoretically did not
apply to broadband wave spectra, Goda (1970) numerically
simulated wave profiles, where the amplitudes were specified
by various theoretical spectra of varying bandwidth and the
phase was random. He then examined the simulated records for
surface elevations, crest-to-trough wave heights and zero-
up~crossing wave heights. He found that, using the zero-up-
crossing determination of wave heights, the Rayleigh distri-
bution is a good approximation irrespective of the spectral
bandwidth. Tayfun (1977), in studying the transformation of
deep water waves to shallow water waves, showed that the
Rayleigh distribution for wave amplitude was generally
applicable to all bandwidths.

The Rayleigh distribution is applied correctly only to
low waves in deep water (Longuet-Higgins, 1975), since it is
assumed that the contributions from different parts of the
generating area are linearly superposable. Under this assumpt-
tion, the distribution clearly should not hold for waves
approaching maximum height, i.e., close to breaking, as in
the surf region or even in the open sea with whitecaps. It
has been found by several authors (Chakrabarti and Cooley,
1977; Forristal, 1978) that the theoretical Rayleigh dis-
tribution over-predicts the maximum wave in the tail compared
with large wave observations. Forristal (1978) attributed
the differences to the non~linear, non-Gaussian and skewed

nature of the free surface.

15
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Tayfun (1980) examined non-linear effects by consider-
ing an amplitude-modulated Stokian wave process with the
restriction that the underlaying first order spectrum is
narrow band. The surface displacements were found to be
non-Gaussian and skewed, and wave heights distributed ac-
cording to the Rayleigh probability law, particularly for low
and medium wave height ranges. On the basis of the results
obtained, Tayfun (1980) concludes that the non-Gaussian
characteristics of the free surface do not directly result
in reducing maximum wave heights in a manner consistent with
field observations and that a more plausible mechanism is
wave breaking, which is a non-linear effect not directly
accounted for in the analytical wave models currently available.

Longuet-Higgins (1980) analyzed the effects of non-

linearity and finite bandwidth on the distribution of wave
heights to explain the differences with observations found

by Forristal. He found that the reason for the discrepancy
could be accounted for by the presence of free background
"noise" in the spectrum, outside the dominant peak, and that
it was not due to a finite-amplitude effect. Longuet-Higgins
concludes that the distribution of wave heights even in a . ;
storm is well described by the Rayleigh distribution, pro-

vided the rms amplitude, a, is estimated from the original

record and not from the frequency spectrum as a = (Zmo)l/z.

The effect of finite bandwidth is estimated from a model

assuming low background noise linearly superposed on a very

narrow (delta function) spectrum. For narrow bandwidths,

16




he obtains the formula

aZ/am, = 1 - 0.73¢ v? (2)
where v is the rms spread of the noise about the mean fre-
quency. Values of v2 corresponding to Pierson-Moskowitz
(broad-band) spectra also give results in close agreement
with observation. Therefore, the Rayleigh distributions
calculated in this paper are parameterized using the rms

wave height.

B. TRUNCATED PROBABILITY DISTRIBUTIONS

In concept, waves are described by the joint distribu-
tion of height, period (or equivalent wavelength) and direc-
tion. To simplify the analysis, all authors assume a very
narrow band frequency spectrum and a narrow directional spec-
trum, so that all the wave heights of the distribution are
associated with a single mean frequency and mean direction,
Therefore, starting in deep water, the waves are described
by the unaltered single-parameter Rayleigh distribution,
with the implied assumptions. The deep water wave heights
are transformed into shallow water waves using shoaling
theory in which frictional dissipation is neglected. Even-
tually the waves reach such shallow water that they start
to break, with the largest waves breaking furthest offshore
first. Wave breaking is simulated by truncating the tail

of the Rayleigh distribution.

17




1. Collins Distribution

Collins (1970) was the first to apply the technique
of a truncated distribution to describe the effects of wave
breaking, using a sharp cut-off with all broken waves equal
to Hy which results in a delta function at Hy. Collins does
not give an explicit formula for his distribution, but it
would be the same as the described by Battjes (1974) (see

below). He used linear shoaling theory and the breaking

criterion after Le Mehauté and Koh (1967

1/4

_ 1/7 -
Hb/H0 = 0.76 tan B(HO/LO) (3)

where tan B is the bottom slope and HO and Lo are the deep

water wave height and length, respectively. For waves break-

ing at an angle o, the bottom slope is actually tan B cos a

bl
and Ho should be replaced by HO cosl/2 %q- The various dis-

tributions, and how they are truncated are showed schemati-
cally in Table I.

2. Battjes Distribution

Battjes (1974, 1978) again used a sharp cut-off of

waves and applied the breaking criterion based on Miche's

g formula for the maximum height of periodic waves of constant

form,

| Hy = 0.88/k tanh (y/0.88 kh) (4)

where y is an adjustable coefficient. In shallow water (4)

reduces to

18
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H = vy h . (5)

He uses linear theory to shoal the waves. The probability !

density for breaking wave heights is given by:

H/28° expl-1/2(H2/B%)1, for 0 < H < H (6)

p (H)

p (H) exp[-l/Z(Hg/ﬁz)]G(H'-Hb), for H > Hb (7)

! where H is the wave height parameterizing the truncated
Rayleigh distribution by Battjes. All waves that have
broken, or are breaking, assume the height prescribed by

(7); this results in a delta function at the truncation

height, H of the distribution (see Table I).

bl
3. Kuo and Kuo Distribution

Kuo and Kuo (1974) investigated the effect of break-
ing on wave statistics using a conditional Rayleigh distri-
bution sharply truncated, specified by the breaking wave
height simply proportional to local water depth, equation
(5). The conditional probability density function of wave

heights, pb(H), is calculated using the following equation,

! py#) = P(E/0O CH<H) = —E(H—)— » for 0 < H < Hy
- b
# / p(H)dH
/ 0
(8)
1 = 0 , for H > Hb . %




Describing the conditional probability in this manner re-
sults in the proportional redistribution of probability
density associated with the broken or breaking waves over the
range of H. This removes the delta function at the breaking
wave height, Hb’ previously described by Collins and Battjes.
Table I shows the original Rayleigh distribution with dotted
lines, and the modified Rayleigh distributions in heavy lines
I after applying the cut-off to the tails using the breaking

criterion. The distribution by Kuo and Kuo is more realis-

£
!

13 tic but still results in a sharp cut-off of the distribution

5. Goda Distribution

1 at the breaking heights.

1 Goda (1975) derived a more realistically truncated

‘ distribution, qualitatively anyway, by requiring a gradual
cut-off of the distribution. He uses a shoaled Rayleigh
distribution to describe the unbroken wave heights at shore-

ward locations prior to applying his cut-off which is given

by

_ 2.2 2,.2.2
po(H) = 4H/KSHo exp (-2H /KSHO) (9)

where KS is the shoaling coefficient. Goda (1975) calculated

: the wave shoaling using the nonlinear theory of Shuto (1974):

which dictates the following:

1

) 0 < giT?/h% < 30: Small Amplitude Theory (10)
i

4

A

30 < giT’/h% < 50: B h?/7 = constant (11)

20




50 < giT?/h? < =: uR3/2[ VguT?/hZ - 2/3] = constant.  (12)

Goda assumes that wave breaking occurs in a range of wave
heights between H2 and Hl’ with varying probability. The
probability density function of unbroken waves only is

expressed as:

pr(x) = po(X) ; for X < X2 (13)
X—X2

p (X)) = p,(X) -RIT:QS'PO(XI); for X, < X < X; (13)

p(X) = 0 ; for X, < X (15)

where, normalized wave heights are defined by X = H/Ho’

X, = Hl/Ho and X2 = HZ/HQ' The artifice of spreading breakers

1
over a range partly represents the inherent variability of
breaker heights, and partly compensates for the simplifica-
tion of using a single wave period in the estimation of
breaker height. Broken waves generally have some height
smaller than xl. Since no theory is available for describing
waves after they have broken, the heights of broken waves

are assumed to be redistributed across the range and to be
proportional to the unbroken waves as was done by Kuo and

Kuo (1975). Therefore, the conditional probability density

function for all heights is calculated by

_ pr(x)
p(X) = Xl (16)

OI pr(X)dx

21
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where:

Xl 2,2

-a X
OJ P, (X)dX 1 - (1+a®X (X -X))le . (17)

il

is a constant of proportionality applied to pr(X) to normal-
ize the pdf. 1In equation (17), the constant, a, is equal to
ﬁ/xs.

The breaker height is estimated using the following
formula, which is an approximate expression for Goda's
breaker index (1970) based on laboratory data,

H L H
2 = a2l -expl-1.5 F2 21 +K tanfB) 1} , (18)

o o] HO LO

where tan B denotes the bottom slope and the coefficients
are assigned the following values for best~fitting to the

index curves,
A = 0.17, K = 15, and p = 4/3.

The range of breaker height, Xl -X2, is calculated

by assigning the following values for A:

o
i

0.18 for Xl’

- 2 -
A = 3 A = 0.12 for XZ'

The upper limit of Al was selected by considering the varia-
bility of breaker heights, whereas the lower limit of A, was

chosen simply as two-thirds of A,. The coefficients used

22
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are based on matching laboratory data taken on a 1/10 and

1/50 beach slope and several field experiments. The Goda

B
!
!
|

]

model is applied here to the experimental data described
below.
S. Summary
The common idea of these studies is to cut-off the
portion of wave height distribution beyond the breaker
height, which is controlled by the water depth and other
i factors. The methods differ in the techniques of cut-off

and the formulae used to define breaker heights.

4
1
i
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III. EXPERIMENT

Experiments were conducted at Torrey Pines Beach, San
Diego, California, during November 1978, as part of the
Nearshore Sediment Transport Study. At this site there is
a gentle sloping, moderately sorted, fine~-grained sandy beach.
The beach profile shows no well-developed bar structure and
is remarkably free from longshore topographic inhomogenei-
ties. Winds during the experiments were light, and variable
in direction. Shadowing by offshore islands and offshore i
refraction, limits the angles of wave incidence in 10m depth
to less than 15°. During the experiments, significant off-
shore wave heights varied between 60 and 160 cm. The condi-
i tion of nearly normally incident, spilling (or mixed plung-

ing-spilling) waves, breaking in a continuous way across the

surf zone, prevailed during most of the experiments.

A. INSTRUMENTS

An extensive array of instruments was deployed to study

nearshore wave dynamics. Measurements described here are

from sensors located on an offshore tranmsect from 10 m depth
to across the surf zone (Fig. 1l). The sensors were of three

types: pressure (P), current (C) and surface-piercing-staff

(W) .
f The pressure sensors were Stathem temperature-compensated
; transducers with dynamic range of either 912-2316 g/cm2 or

912-3720 g/cmz. They were statically precalibrated and
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postcalibrated by being lowered into a salt-water tank and
were found quite linear; the gains differed by less than 2%
between calibrations.

Current meters were two-axis, Marsh-McBirney electro-
magnetic, spherical (4 cm diameter) probes, with a three-
pole output filter at 4 Hz. Precalibration and postcalibra-
tion of current meters showed little change in replicate
runs with steady or oscillating velocity fields. The uncer-
tainty associated with using a single gain factor for all
frequencies is roughly estimated at *5% in amplitudes (10%
in variances).

The wave staffs were dual resistance wires with low
noise, high resolution, and good electronic stability. The
accuracy of the wave staffs was about #3% based on repeata-
bility of gain calibrations measured in the laboratory and

in situ.

B. DATA ANALYSIS

Sea surface elevation and wave velocity components were
retrieved from sensors by telemetering to shore and there
recorded on a special receiver/tape recorder, described in
detail by Lowe et al., (1972). The sampling rate was 64
samples/s which was reduced to 2 samples/s by digital low-
pass filtering. Record lengths of approximately 68 minutes
from each data set were analyzed.

It was desired to examine only the sea-swell band of

frequencies between 0.05 to 1.0 Hz (20 to 1 s periods). The

25
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data were first linearly detrended to exclude effects of the
rising and falling tides. The data were then high pass
filtered with a cut-off frequency of 0.05 Hz (20 s period).
The high pass filter used a Fast Fourier Transform algorithm
to obtain the amplitude spectrum of the entire 68 minute
record. The Fourier coefficients corresponding to 0 to

0.05 Hz were used to synthesize a low frequency time series
which was subtracted from the wave record. The limiting high

frequency (Nyquist) was 1.0 Hz.

The energy density spectra were calculated in a similar
manner for wave and velocity measurements using the Fast
Fourier Transform (FFT) algorithm. A cosine~squared taper
data window was applied to the time series to minimize leakage.

The highest maximum and lowest minimum of the surface
elevation within a period interval defined, respectively,
the crest and trough of a wave. A wave height H is defined
as the total range of z(t) in that interval, the time between
two consecutive zero-up-crossings of 7(t) (see Fig. 2).

Since the average wave period was about.l4 sec, the total
number of waves in the 68 min. record was about 300, which
gives reasonable wave statistics. The height statistics of \g

mean wave height H, root mean square wave height Hrm '

]
significant wave height ﬁi/3 (average of the heights of the
1/3 highest waves), and Ei/lo (average of the heights of the
1/10 highest waves), are calculated from the ordered set of

wave heights.




The pdf and cumulative distributions of wave heights
were calculated. The heights were normalized using the
deep water root mean square value. Theoretical probability
distributions were calculated using the Goda model and com-
pared with measured distributions.

A deep water reference wave height was calculated by
measuring the energy using current meter C9 located at about
4 m depth and backing the energy out to deep water. Kinetic
energy spectra were calculated from the measured horizontal
velocity spectra, Su(f) and Sv(f); linear theory transfer
functions were used to integrate the spectra over the water

column, so that the average kinetic energy is
_ 2
<KE(£)> = [|H(£)|7[S (£) +5_(£)] (19)

where IHKE(f)I2 is the transfer function that relates the
velocity spectrum components to the kinetic energy,

1 0 sinh 2kh

2
|H, . (£) | = (20)
KE 33 coshzk(h-+zm)

where z, is the measurement elevation. Guza and Thornton
(1980) showed, for these same experiments, that using linear
theory transfer functions to calculate average kinetic energy
gave reasonable results. To first order in energy, the
average potential energy equals the average kinetic energy.
The potential energy in deep water is obtained by applying

linear shoaling transformation




<PE(f)> = |H (D) |P<PE(D) >, (21)

deep water

where Hs(f) = /Cg 7Cg, is the linear shoaling coefficient.
o

The rms wave height is related to the PE and KE by

|
{
i
!

<PE> = £ o gH = <KE> = [ <KE(f)>df ,  (22)
£

from which the deep water rms wave height, denoted hence-

forth by Ho’ can be found.

To take advantage of the large number of current meters,
current data were used to infer wave heights. The velocity
signals were convolved using linear wave theory to obtain
surface elevations. The complex Fourier spectra of the
horizontal velocity components U(f), V(f) were first calcu-
lated and vectorially added. The complex surface elevation
spectrum, X(f), was calculated applying the linear wave

theory transfer function, H(f)
X(£) = H(£) V() (23)

where

_ sinh kh
¥ H(f) = w cosh k(h-+zm) (24)

The complex surface elevation spectrum was then inverse
transformed to obtain the surface elevation time series from
which the wave height distribution is calculated. The entire

68 min. record was convolved at one time in order to minimize

the end effects which result in spectral leakage.
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IV. RESULTS

A. TYPICAL SPECTRA
A broad range of wave and weather conditions were en-
countered during the experiments. Typical velocity spectra

for two days (Fig. 3, lower panel) include an example of

2 very narrow band spectia calculated for November 20 for the
current meters C22x and C23x which straddled the mean breaker
line. 1In shallow water depths, the waves generally become
more "peaky", resulting in increased energy at the harmonics.
The presence of strong harmonics in the spectra indicates

the importance of nonlinearities of the waves in shallow
water. The spectral energy level decreases at all frequen-
cies except at the very lowest from the deeper instrument

C22x (heavy line) to the shallower instrument C23x due to

breaking. The other typical spectra (Fig. 3, upper panel)
are an example of combined sea and swell with a narrow band
of energy at swell frequencies, but with broad band energy

at higher frequencies.

B. HEIGHT STATISTICS

The wave height statistics for six days, inferred from
wave staff and current meter data, are presented in Table II.
The statistical parameters listed are: root-mean-square

heights, Hrms

. significant wave heights, 51/3, average of
the heights of the 1/10 highest waves, ﬁi/lo’ and the maximum

height, Hmax‘ These parameters were obtained from 68 min.
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records. The reference wave height Ho’ obtained by backing
the energy measured at current meter C9 out to deep water,
the frequency peak of the spectrum and the depth for each
instrument, are also presented. Most of the wave staff
measurements were made inside the surf zone, after the waves
have started breaking.

Shoaling effects are observed in the data of Table II.
and H

The Hrm rease as depth decreases,

s’ Hy/30 1/10° 1n€
until they reach the breaking point after which the wave
heights decrease as the depth decreases, due to breaking.

The range of depths of the instruments is from about
570 cm to 40 cm. The average peak frequency (peak frequency)
varied little during the experiments and was about 0.07 sec-l
(Table II). The relative depth for the waves at the peak
frequency is h/L < 1/25 in all cases so that they can be

considered shallow water waves.

C. COMPARISON OF EMPIRICAL WITH MODEL DISTRIBUTIONS
The Goda model is compared with measured data. The model
is first run using Goda's original coefficients. This model
results in over-prediction of the Hrms‘ The coefficients
are changed to optimize the model's description of the wave .
height distribution qualitatively, and Hrms guantitatively.
The Hrms parameter was calculated from the second moment of
the wave height distribution and is, therefore, a more sensi-

tive parameter to describe the shape of the distribution

(particularly the tail) than, say, first moments such as the

mean H, Hl/3' Hl/lO'
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A comparison (Fig. 4) was made between the empirical
wave height distribution normalized with the reference deep
water wave height and Goda's model distribution for November
20. Starting in deep water, it is observed that the model
fits quite well the empirical distribution obtained from the
pressure sensor P7. It is clearly seen that the wave heights
in deep water are essentially Rayleigh distributed. 1In
shallow water the model over-predicts the tails and under-
predicts the peaks. The smaller the depth the greater the
errors (Figs. 4 and 5). Due to this over-prediction at the
tails of the distribution the rms wave heights obtained by
the model are larger than the measured ones.

To obtain a better agreement between the measured and
the calculated rms wave heights, the higher limit of breaking
and the range of breaking of the model are changed. Goda

(1975) calculated the shoaling using the nonlinear theory

of Shuto (1974) (see equations 10, 11 and 12). For all the
ranges of wave heights, frequencies and depths used here,

the values of gHTz/h2 are calculated and in all cases analyzed,
fall in the third category, equation(l2). This law was used

to calculate the nonlinear shoaling coefficient Ks. Goda
assumed a range of breaking between Hl and H2 that takes

into account the variability of breaker heights and the use

of a single frequency. The variable breaker height Hb is a
function of the frequency, depth and bottom slope (see eguation
18). The values of the coefficients used by Goda in his

breaking criterion are the following: Al = 0,18, A2 = 2/3 Al,
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K =15 and p = 4/3, empirically assigned to give the best-
fit with observed wave heights. The coefficients used here
to give a qualitatively better fit with the measured dis-
tributions and quantitatively fit with Hrms are: Al = 0.136,
A2 = 1/2 Al, K = 20; p was left equal to the previous value.
The most sensitive coefficient is Al which was determined
first. Values of Al were calculated for various distributions
by first obtaining the higher breaker limit (Xl) from the
measured empirical distributions as indicated by the maximum
value of the distribution, and then calculating Al using equa-
tion 18. The values of Al were then averaged to give a
single representative value for all distributions. The
coaefficient A2 was chosen as 1/2Al, which results in a more
symmetrical distribution as indicated by the results. The
coefficient K, which weights the slope of the beach, was
determined by trial-and-error testing of Goda's model for a
variety of values looking for the best fit of all the distri-
butions. The model is not very sensitive to changes in K.
The comparison (Fig. 6) of the empirical distribution
in deep water for November 20 with the distribution obtained
applying the model used the new coefficients. In deep water,
there is no notable difference from the original model's
results (Fig. 4). 1In shallow water, the predicted values
obtained with the modified model fit much better the
empirical distributions than those obtained applying the

original Geda model.

32




As stated earlier, the coefficients Goda originally speci-

fied were based on matching laboratory data for a two beach
slopesof 1/10 and 1/50. The model was then applied to some
field data, but unfortunately the beach geometry (slopes)
were not given. The Torrey Pines Beach is approximately
1/50 at the beach face and the wave climate is characterized
by long period (~14 sec) swell. The reason for differences

in the model coefficients needed to fit this data set com-

pared with Goda's suggested coefficients is not known.

D. COMPARISON OF RMS WAVE HEIGHTS

The model calculated Hrms values and measured values of

1 Hrms calculated directly from the wave heights are used to

! test how well the model works. Table III shows the measured,

'Vj Rayleigh, and the calculated Goda and modified Goda root-
mean-square wave heights corresponding to the wave staffs

and current meters for six different days.

D' Goda's model-predicted Hrms values are, in general,

'J larger than the measured ones (Fig. 9). In an attempt to

3 explain the differences, Hrms values obtained from the

' model were plotted against depth, deep water wave height
and Ursell number; but no meaningful correlation was obtained
with any of these variables.

Measured Hrms and calculated values assuming the wave

heights are Rayleigh distributed so that H___ = /§ho were

’ compared (Fig. 8a). Measured and assumed Rayleigh signifi-

cant wave heights were also compared (Fig. 8b). The comparisons
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show that the agreement between measured and Rayleigh sta-

tistics are good for both small and large wave heights,
inside and outside the surf zone. The good comparisons with
Rayleigh statistics suggests that the wave heights, although
decreased by breaking, are still more nearly Rayleigh-dis-
tributed than cut-off Rayleigh, as suggested by Goda.

The change of the rms wave heights with depth, between

the measured Hrms and the calculated ones obtained by the

model first applying nonlinear (heavy line) and then linear

shoaling (light line) were compared (Fig. 10). The model with

nonlinear shoaling clearly over-predicts the values, while

the model with linear shoaling gives reaonable values, com-

pared with measurements. The nonlinear shoaling "blows up"

in very shallow water (<30 cm) and should be ignored.

Measured and the calculated rms wave heights with depth

obtained by applying linear and nonlinear shoaling using the

modified coefficients were also compared (Fig. 10, lower

panel). This figure illustrates that the modified Goda model

fits better the data than the original does. The majority

of the measured Hrms fall between the two curves obtained with

nonlinear and linear shoaling. Based on the choice of coeffi-

cients, applying linear shoaling to Goda's model can give

as good, or better, results as applying nonlinear shoaling.

The rms wave height values, obtained using the modified '

model coefficients, were plotted against depth, deep water

wave height and Ursell number; no obvious correlation could
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be noted. It is found that the new predicted Hrms values
compared with measured Hrms have an error of less than +20%
at all depths (with the exception of one anomalous point)

(Fig. 11).

E. WAVE HEIGHT DISTRIBUTIONS USING CURRENT METERS

As described earlier, the surface elevations were derived
by linearly convolving the velocity records and wave height
distributions calculated. The basis for applying this analy-
sis is the earlier work of Guza and Thornton (1980) where
they showed, for this same data set, that linear theory spec-
tral transformations could be used to calculate surface ele-
vation standard deviations either from pressure meters or
current meters with less than a 20% error, and typically less
than 10%. Examples of the derived wave height distributions
are considered for November 17 (Fig. 12). These measurements
were made just outside the surf zone, at about the breaker
point and inside the surf zone (current meters C23, C37 and
C40 respectively). In general, the model overestimates the
velocity derived wave height distributions more than the
direct measurements. The reason for the discrepancy is that
linear wave theory underestimates the surface elevations in
convolving the velocities, particularly in the crest region
of the waves. In other words, linear theory does not account

for the finite amplitude of these highly nonlinear waves.
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F. COMPARISON OF MODEL AND MEASURED CUMULATIVE DISTRIBUTIONS
The cumulative exceedance of wave height distributions
normalized with rms deep water wave height were calculated
applying the modified Goda model (using nonlinear shoaling)
and plotted with the measured cumulative distribution for
comparison. The cumulative exceedance distribution empha-
sizes information in the tail of the distribution. For an
example in shallow water, inside the surf zone (116 cm depth),
there is a good agreement between the measured and predicted
distributions with a slight underprediction by the model in
the tail (Fig. 13). With sensors located just outside the
surf zone, under-prediction of the tail is larger and over-
prediction in the middle range occurs (Fig. 14). In general,
there is a better agreement between the two distributions well
inside the surf zone, e.g., wave staffs W38 and W4l, than
those (W21 and W29) which were generally either at breaking
or just outside the surf zone, the most nonlinear wave

region,
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V. CONCLUSIONS

It is confirmed that the wave heights in deeper water
(7 m) are Rayleigh distributed.

Goda's model, using the empirical coefficients originally
suggested on the basis of laboratory and poorly specified
field measurements, over-predicts the tail of the distribution
and under-predicts the peaks. As a consequence, the predicted
rms wave heights are larger than the measured. BAs the depth
decreases, the errors of the predicted distributions increase.
To get a better fit with the measured wave height distribu-
tions, the coefficients in the breaking criterion used in
Goda's model were modified. The values for Goda's breaking
criterion giving the best fit to the measured data of this

study are:
Al = 0.136, A2 = 1/2 A1l and K = 20 .

The percentage of error between the measured and the pre-
dicted Hrms values from the model with these coefficients is
les than *20%.

Linear shoaling was found to be as good as nonlinear
shoaling in applying Goda's model across the surf zone.

Good comparisons were obtained between empirical and
Rayleigh-derived statistics. This indicates that the wave
heights, although decreased by breaking, are still more
Rayleigh-distributed than the cut-off Rayleigh-distributed

as suggested by Goda.
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Goda's model was tested here with a large amount of
field data for a variety of wave conditions on a 1/50 beach
slope. Further comparisons should be made for a variety of
beach slopes and wave climates in order to test the general

applicability of the model.
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TABLE II. WAVE HEIGHT STATISTICS 1
(all values in cm)

b e A ST
PSR o

9; Date Inst h Ho f Hrms Hl/3 Hl/lO Hmax

Nov 4 w4l 82 42.5 .0703 33.2 44 .4 53.2 74.3
w38 125 42.5 .0703 44.8 61.5 73.4 98.1
w2l 177 42.5 .0703 50.6 71.8 90.9 131.3
w29 225 42.5 .0703 56.7 8l.3 113.8 188.3

Nov 10 W21 170 66.1 .0632 61.0 85.5 107.4 140.4

Nov 17 W4l 92 44.8 .0729 37.8 50.7 59.4 79.5

w38 141 44.8 .0729 52.0 72.1 86.9 111.5
; w2l 197 44.8 .0729 54.1 76.2 94.1 139.2
i w29 209 44.8 .0729 52.0 72.8 93.7 154.0

Nov 20 W38 116 52.4 .0666 35.9 49.3 57.9 83.8
w2l 153 52.4 .0666 48.6 68.1 84.2 120.3
w29 182 52.4 .0666 73.1 110.2 143.0 202.7

Nov 20 C42 39 52.4 .0703 18.0 27.0 33.8 49.1
C39 102 52.4 .0703 35.6 50.5 59.8 82.6

C37 116 52.4 .0703 36.5 53.6 62.1 81.8

C36 142 52.4 .0703 40.1 60.4 69.8 89.5

C23 147 52.4 .0703 51.6 80.2 98.0 118.9

Cc22 188 52.4 .0703 60.8 96.1 127.7 159.3

| Cl9 250 52.4 .0703 68.9 105.1 149.0 210.4
! Cl5 355 52.4 .0703 58.7 88.5 125.5 217.9
: Cc09 571 52.4 .0703 55.8 84.0 115.2 192.4

: Nov 24 W38 65 36.4 .0639 10.1 14.5 18.4 26.3
“ w21l 86 36.4 .0715 26.7 36.6 43.5 55.8
!

Nov 18 W4l 84 55.4 .0757 33.8 45.8 55.4 109.1
w2l 195 55.4 .1552 61.4 87.2 103.9 131.7
w29 198 55.4 .0756 63.9 91.3 117.2 166.3 ~
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TABLE III. MEASURED AND CALCULATED RMS WAVE HEIGHTS
OBTAINED WITH GODA'S MODEL AND MODIFIED

} GODA'S MODEL (all values in cm)
: RMS WAVE HEIGHTS SIG. HEIGHTS
Date Inst. Meas. Ray. Goda Mdf.G. Meas. Ray
Nov 4 W4l 33.2 33.7 34.6 30.9 44.4 46.9
W38 44.8 46.2 55.9  47.5 61.5 63.4
W21 50.6 52.3 67.3 51.1 71.8 71.6
W29 56.7 58.2 65.3 58.5 81.3 80.2
Nov 10 W21 61.0 64.9 85.3 64.5 85.5 86.3
Nov 17 W4l 37.8 37.9 48.6  34.7 50.7 53.5
, W38 52.0 52.2 66.1 53.4 72.1 73.5
K W21 54.1 55.6 70.3 56.0 76.2 76.5
] W29 52.0 53.8 69.8 58.1 72.8 73.5
B Nov 20 W38 35.9 36.2 50.3  43.9 49.3 50.8
L w21 48.6 50.3 68.3  44.9 68.1 68.7
: w29 73.1 67.5 77.6 53.3 110.2 103.4
1 Nov 20 C42 18.0 18.2 21.4 18.0 27.0 25.4
c39 35.6 36.1 54.0  38.5 50.5 50.3
c37 36.5 36.3 60.3  43.9 53.6 51.6
, c36 40.1 40.0 70.1 53.8 60.4 56.7
, c23 51.6 50.0 71.5 55.7 80.2 73.0
c22 60.8 57.5 79.1 54.9 96.1 86.0
3 cl19 68.9 65.0 78.3 67.5 105.1 97.4
cl5 58.7 60.9 72.0 64.0 88.5 83.0
) c09 55.8 60.7 64.0 55.6 84.0 79.0
Nov 24 W38 10.1 10.7 26.7 24.4 14.5 14.3
w21 26.7 27.5 44.6  32.7 36.6 37.8
Nov 18 W41 33.8 35.5 33.4 31.4 45.8 47.8
w21 61.4 59.7 59.6 50.8 87.2 86.8
W29 63.9 61.7 80.7 57.5 91.3 90.4
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where X is a crest
* is a trough
0 is the zero-up crossing

Figure 2. Definition sketch of zero-up-crossing
wave heights.
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Figure 4. Empirical distribution of wave heights compared
with those predicted with Goda's model, starting
in deep water (P7) and going into shallow water
(W21, W38), 20 November 1978.
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Figure 6.
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with those predicted with the modified Goda's
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Goda's model.
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